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Abstract

The technique of digital signature is essential for safe transactions over open net-

works. It is used in a variety of applications to ensure the integrity of exchanged in-

formation and to demonstrate the identification of the originator to the receiver.

We review the scheme of Kuppuswamy et al. the digital signature scheme based

on block cipher.

This technique is a new version of the digital signature algorithm based on a lin-

ear block cipher or asymmetric algorithm initiated by Hill cipher with keys as

invertible matrices over Zn. Through cryptanalysis, we found that the block digi-

tal signature scheme is insecure. In this thesis it is shown that the digital signature

scheme can be broken by mounting a known-plaintext attack. In fact, a successful

key recovery attack can be mounted with limited complexity.

Another topic that is discussed in the thesis is the use of self-invertible Hill cipher

for encryption scheme by Kumar et al. The author proposed a method for Hill ci-

pher algorithm based on self-invertible matrices.The use of self-invertible matrices

reduces the decryption cost but it contributes nothing towards the security of the

system. It is shown that the encryption scheme proposed by Kumar et al. is

not secure and has security flaws. A successful cryptanalysis resulted in the full

recovery of the secret key.
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Chapter 1

Introduction

1.1 Cryptography

A major issue with the data under communication over the public network is its

safty. Cryptography plays a vital role in solving the safety problems of sensitive

data. In this context cryptography has many contributions. The term “cryptog-

raphy” derives from two Greek words kryptos which means “hidden” and logos

which means “words”. Cryptography is a science of secret communication, that

is used to make the communication secure in the presence of a third party over

an insecure channel by altering the original message into an unreadable form. For

this purpose we use different methods for transformation of the original message

into the coded form. Such methods are known as cryptography [1].

We also need to analyze these methods to check their effectiveness and perfor-

mance for their improvement. The whole analysis is performed in another branch

named as cryptanalysis. It observed that when there is some vulnerability in

the cryptosystems, a cryptanalyst performs cryptanalysis.

The stability of any cryptosystem can be judges to break the cryptosystem by

taking security analysis.

The cryptographic systems are split into two classes based on the use of key [2].

• Symmetric (Private) Key Cryptography

1
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• Asymmetric (Public) Key Cryptography [3]

With symmetric key cryptography, both the sender and receiver use only one key to

encrypt or decrypt the information. However, the main problem in this technique

is the distribution of keys. Data Encryption Standard (DES) [4] and Advanced

Encryption Standard (AES) [5] are the examples of symmetric key cryptography.

To overcome the issue of key distribution, in 1976, asymmetric key cryptography

was presented by Diffie-Hellman [6].

The asymmetric key cryptosystem utilizes two different keys i.e, (encryption key

and decryption key). For the encryption process, one key is used while another

id used for the decryption process. Since the encryption key is public, so anyone

can encrypt the data but only the individual with the decryption key can decrypt

that data because the decryption key is kept private. Examples of asymmetric key

cryptography techniques include ElGamal [7], Rivest Shamir Adleman (RSA) [8],

Elliptic curve cryptography (ECC) [9] etc.

Many cryptographic schemes are used to secure data for safe communication based

on the keys of encryption and decryption. A cryptosystem is considered secure if

the encryption and decryption keys are secure.

1.2 Digital Signatures

The digital signature is an essential part of different cryptographic primitive as

verification, authorization and non-repudiation [6]. The main purpose of a digital

signature is to allow an entity to define its identity with a small amount of infor-

mation [10]. Public key cryptography and digital signature schemes presented by

Diffie-Hellman and Martin Hellman are published in their article “New Direction

in Cryptography” [6].

In their digital signature scheme, each user has identity i.e. a pair containing

his/her public key and the corresponding secret key. Signatures are often verified

by using the secret key of the sender. Rivest, Shamir, and Adleman presented the

first digital signature scheme. Their scheme is based on the supposition that is

called “RSA assumption”. Goldwasser et al. also worked on digital signature [11].
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This scheme is not based on “signature trees”, but follows the so called paradigm

of “hash-and-sign” (for more details also see [12]).

Rompher illustrated how a digital signature scheme can be constructed using one

way method. Genaro and Helevi [13], Cramer and Shoup [14] proposed the first

signature schemes whose efficiency is suitable for practical use and safe against

adaptive chosen message attacks.

Electronic commerce and confidential network communications have played the

fundamental role in the public key cryptosystem [15]. A digital signature is a

confirmation that the received message is in its original form and not been altered

during the communication [16]. However, it relies on the pieces of both the trans-

ferred data and the secret key which can be verified at any stage of communication.

Digital signature is a data that is calculated cryptographic value and a secret key

known only to the signer [17].

Cryptographers have been working on electronic signature techniques and investi-

gating their characteristics for many years [18].

1.3 Hill Cipher

In 1929, the mathematician Lester S. Hill invented Hill cipher. The basic and

most important part of Hill cipher is matrix multiplication. Hill cipher operates

on groups of symbols like the digraphic cipher. It is extended to work on differ-

ent size of blocks of symbols and technically polygraphic substitution cipher. In

polygraphic substitutions each letter is replaced in different ways, according to

their place in the document. The Hill cipher is based on linear algebra, including

multiplication of matrixes.[19]

This performs by converting the plaintext letters into numbers, splitting the resul-

tant sequence of numbers into blocks of n values, each of which is represented as

a vector of n elements and multiplied by an invertible key matrix to produce the

corresponding ciphertext block. Decryption works in the same way, except that

it substitutes the key matrix with its inverse [19, 20]. In Hill cipher, a numerical
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value from 0 to 25 is allocated to all 26 alphabets for example A = 0, B = 1, ...,

Z = 25 [21, 22].

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Table 1.1: Encryption scheme

There are m equations used during the encryption of m plaintext letters to m

ciphers as given below:

C1 = (K11P1 +K12P2 +K13P3) mod 26

C2 = (K21P1 +K22P2 +K23P3) mod 26 (1.1)

C3 = (K31P1 +K32P2 +K33P3) mod 26

the above used equations can be written in matrix form as follows:
C1

C2

C3

 =


K11 K12 K13

K21 K22 K23

K31 K32 K33



P1

P2

P3

 (1.2)

in simple equation form is C = KP , in which C and P are an order 3 column

vector describing plaintext and ciphertext, and K is a key of an order 3 × 3. All

of the processes are under modulo 26. In the decryption invertible matrix of K is

required. Equation

KK−1 = K−1K = I, (1.3)

defines the inverse of a matrix ‘K’, where ‘I’ represents the identity matrix of 3

× 3. However, there are some matrices whose inverses do not exist, and when it

happens, the Equation (1.3) will be satisfied. We apply K−1 on the ciphertext to

retrieved the original text [20, 23]. We may write the general form as:

Encryption process:

C = Ek(P ) = KP. (1.4)
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Decryption process:

P = Dk(C) = K−1C = K−1KP = P. (1.5)

If the size of the block is m taken as, then there is a possibility of 26m different

blocks. Each of them can be considered as a letter in an alphabet. Hill’s method

is a monoalphabetic substitute for this alphabet [21].

1.4 Current Research

In this dissertation, we cryptanalysis the matrix based cryptographic schemes:

One is the “Digital Signature Scheme based on Block Cipher” and other is the

“Matrix based Encryption Scheme using Self-Invertible Hill Cipher”.

Firstly, we focus on the digital signature scheme based on block cipher given by

Kuppuswamy et al. [24]. Signed messages are often transmitted over an electronic

network. He proposed a key generation algorithm for the digital signature scheme

and described the methodology of a digital signature algorithm. We cryptanalysis

digital signature scheme supported block cipher presented in [24].

Secondly, we focus on the paper encryption scheme based on self-invertible Hill

cipher by Kumar et al. [25]. This article describes the methodology of the Hill

cipher. Hill cipher is based on manipulations of the matrix. And in terms of

standard arithmetic, this justifies that the mathematical operation given here is

the addition, subtraction, the monadic operation, multiplication, and the division

[10]. Then he justifies the self-invertible key matrix-generating algorithm. We

cryptanalysis digital signature scheme supported block cipher presented in [25].

1.5 Thesis Layout

Our thesis is structured as follows:

In Chapter 1, we have mentioned the concept of cryptography, the cryptographic
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background and presented introduction to the basis terms related to cryptography.

Furthermore, we mentioned the idea of digital signature and Hill cipher.

In Chapter 2, we present the fundamental definitions of cryptography and a few

mathematical terms associated with our work. Additionally we describe cryp-

tology, sorts of cryptography, the purpose of cryptography, some basic definition

associated with encoding and the distinction between a digital certificate and dig-

ital signature. At the end of this chapter, we discuss the importance of digital

signature.

In Chapter 3, we present the review of the digital signature scheme based on block

cipher given by Kuppuswamy et al. [24]. For that purpose, we have discussed nu-

merous well-known digital signature schemes. Ultimately we have described our

finding i.e. digital signature cryptanalysis for block cipher with the help of an

example.

In Chapter 4, we discuss the review of another cryptographic scheme that is

encryption scheme based on self-invertible Hill cipher given by Kumar et al. [25].

For that purpose, we have got a bent to say modular arithmetic and its properties,

strategies for generating a self-invertible matrix, we explain our work of cryptanal-

ysis of encryption scheme based on self-invertible Hill cipher with the help of an

example.

Finally the conclusion is presented in chapter 5.



Chapter 2

Preliminaries

A few fundamental definitions of terms related to cryptography and key man-

agement are provided in this chapter. Furthermore, some fundamental algebraic

concepts are also illustrated for further assistance.

2.1 Cryptology

The term cryptology [26] is originated from two Greek terms kryptos means (Hid-

den or secret) and logos means (letters or words). Cryptology is a science that

deals with hidden, disguised, or encrypted communications.[27] It includes com-

munications security and communications intelligence. It consists of the following

two fields of study:

Figure. 2.1. Types of Cryptology

7
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1. Cryptography

2. Cryptanalysis

2.1.1 Cryptography

Some basic definitions related to cryptography are

Plaintext: The data that is in the original form is known as plaintext (in some

cases called cleartext).

Ciphertext: Ciphertext is a scrambled data or it is the information or message

in coded form.

Key: A key is a piece of data (a parameter) that specifies the functional output

of a cryptographic function.

Encryption: Encryption is the technique to convert the plaintext into ciphertext

by using the encryption key.

Decryption: Decryption is the technique to transform ciphertext back into plain-

text by using the decryption key.

Cryptography is associated with the process of converting ordinary plaintext by

using a key into unintelligible text known as ciphertext and vice-versa [3].

It is a process of storing and transmitting data in a specific form such that it can

only be read and analyzed by those for whom it is intended. Cryptography not

only secure data from misuse or manipulation, but it can also be used to authen-

ticate users.

Cryposystem: A cryptosystem is a system where we use encryption function to

transform ordinary data or message (plaintext) into secret codes (ciphertext) and

transform secret codes back into a data using decryption. A cryptosystem consists

of five basic components:
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1. Message Space M : The set of all possible original messages (plaintext) m

is known as message space.

2. Key Space K: The key space of an algorithm corresponds to the set of all

possible permutations of a key.

3. Encryption Function E: takes plaintext as the input and transform it

into ciphertext with the help of encryption key.

4. Ciphertext Space C: The set of all possible messages, that are scrambled

with the help of key K is known as ciphertext space.

5. Decryption Function D: Takes ciphertext as the input and decodes it

into plaintext, with the help of decryption key.

Cryptography not only secures the messages but also provides the following im-

portant applications [28].

1. Confidentiality: Confidentiality refers to the protection of data from unau-

thorized parties. It comes up with two embedded qualities, i.e. data confi-

dentiality and privacy.

(a) Data Confidentiality: It ensures the confidential information is not

disclosed in the network to an unauthorized person.

(b) Privacy: Authority assures to oneself that data associated to them

will not be compromised.

2. Integrity: Integrity involves:

(a) Data Integrity: is the overall accuracy, completeness, and consistency

of the data. Data integrity also refers to data security in terms of

compliance and compatibility of regulations.

(b) System Integrity: A assured system that fulfills the proposed con-

cepts in an unaffected manner that are free from illegal manipulation.
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3. Message Authentication

It involves validation which provides the originator’s identifiable evidence.

Two types of authentication services are provided in cryptography:

(a) Integrity Authentication: Authentication of integrity can be used

to verify that the data has not been modified.

(b) Source Authentication: Source authentication verifies the identity,

of user or device.

4. Non-Repudiation

It assures that someone cannot deny something. Non-repudiation is a legal

concept that is widely used in information security and refers to a service,

which provides proof of the origin of data and the integrity of the data. In

other words, non-repudiation makes it very difficult for sender to success-

fully deny who/where a message came from as well as the authenticity of

that message.

For example, when an application is made electronically, the purchaser can-

not deny from the purchase request, if this transaction permits non-repudiation

service.

There are two major classification of cryptography based on key dissemination

known as Symmetric Key and Asymmetric Key Cryptography as shown in

Figure 2.2

Figure. 2.2. Types of Cryptography
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2.1.2 Symmetric Key Cryptography

The symmetric key cryptography is also known as secret key cryptography [29]. It

uses the same encryption technique and similar or equal keys for encryption and

decryption of the data. A typical symmetric key cryptographic model is displayed

in Figure 2.3

Figure. 2.3. Symmetric Key Cryptography

It utilizes a secret key which can be either a number, a word or a random letter

string. The sender and the receiver should be familiar with the secret key used

to encrypt and decrypt all documents. Examples include DES (Data Encryption

Standard) [4] and AES (Advanced Encryption Standard) [5] etc.

These schemes are very effective and secure. Disadvantages of such cryptosystem

include key management and related security issues.

2.1.3 Asymmetric Key Cryptography

Diffie-Hellman algorithm is one of the first techniques introduced in asymmetric

encryption for the exchanging of keys. It was developed in 1976 by Martin Hellman

and Whitfield Diffie [6]. This method eliminates the need for two communicating

parties to switch keys.
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“Asymmetric cryptography, also known as public key cryptography, uses public

and private keys to encrypt and decrypt data. It ensures that malicious persons

do not misuse the keys.

It is important to note that anyone with a secret key can decrypt the message and

this is why asymmetrical encryption uses two related keys to boost the security.

A public key is made freely available to anyone who might want to send you a

message. The second private key is kept secret.

A message that is encrypted using a public key can only be decrypted using a

private key, while also, a message encrypted using a private key can be decrypted

using a public key. Security of the public key is not required because it is publicly

available and can be passed over the internet. The asymmetric key has far better

power in ensuring the security of information transmitted during communication.

Asymmetric encryption is mostly used in day-to-day communication channels, es-

pecially over the Internet. Popular asymmetric key encryption algorithm includes

ElGamal [30], RSA [31], Elliptic curve techniques [32], PKCS” [33].

As shown in Figure 2.4.

Figure. 2.4. Asymmetric Key Cryptography

The sender and the receiver are the two participants in the asymmetric encryption

scheme. The sender acquires the public key of the receiver. At that stage the

plaintext is encoded with the asymmetric encryption algorithm by utilizing the
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recipient’s public key, and focus the ciphertext.

Then the ciphertext is sent to the receiver, who decodes the ciphertext with his

private key and gets the sender’s plaintext.

Due to the one-way nature of the encryption function, any sender is unable to

read the messages of another sender, even though everyone has the knowledge of

the public key of the recipient.

Examples of such a cryptosystem are RSA [31], ElGamal [30] and Diffie-Hellman

key exchange [6].

2.2 Cryptanalysis

Cryptanalysis is the decryption and analysis of codes, ciphers or encrypted text

without the knowledge of decryption key. Cryptanalysis uses mathematical for-

mulas to search for algorithm vulnerabilities and break cryptographic information

security systems. It is a mechanism to obtain plaintext from ciphertext without

the knowledge of key [34].

If any one property from four properties (confidentiality, information integrity,

message validation, and non-repudiation) are found to be weak in a cryptosystem

then the cryptosystem is said to be vulnerable to an attack. Cryptanalysis is

mostly used for attacking a secret message or finding a secret key or to check the

quality of a cryptosystem.

Some known cryptanalysis attacks are stated below:

1. Brute Force Attack

In this attack, to reveal the plaintext from the ciphertext, the attacker ar-

bitrarily tries all the possible keys. The hardness of this attack is directly

connected with a key size that is getting used. The larger of the key size,

the larger will be the size of key space and hence harder will be the brute

force attack [35].
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2. Chosen Plaintext Attack

For attacking a cryptosystem there are several structures, a chosen-plaintext

attack is one of them. An attacker arbitrarily picks some plaintext utilizing

this attack for encoding and gets the relating ciphertext. The goal of this

attack is to reduce the encoding scheme security in order to extract additional

data from the ciphertext [11, 36].

3. Chosen Ciphertext Attack

It is a similar situation as the chosen plaintext, however, it is applied to

decryption function. An attacker arbitrary chooses some ciphertext and

tries to obtain the related plaintext. The reason for utilizing this attack is

to acquire additional data identified to the plaintext [36].

4. Ciphertext Attack

An attacker uses the ciphertext to achieve the key or plaintext. For breaking

the system letter’s frequency can be used. Typically, the attacker has no

data concerning the plaintext however he attacks the original message by

exploitation ciphertext attack.

5. Known Plaintext Attack

In this attack, a pair of plaintext and ciphertext is known to a cryptanalyst.

He uses previous data to decipher any further ciphertext or to determine the

key [37].

6. Man-in-the Middle Attack

In this attack, a hacker stays secretly across the public network between the

two parties who want to communicate. The attacker totally controls the

communication of both the sender and receiver. In this attack, two keys

K1 and K2 are selected by the attacker. The statement between the sender

and the receiver is completely controlled by the attacker in two phases. At

first, the sender by using K1 encrypts his message and sends this encrypted

message to the receiver over a public network.
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Since there is an attacker between the sender and receiver in this manner,

an attacker gets the encrypted message except for the receiver. He/she can

decrypt the encrypted message. Secondly, an attacker by using K2 encodes a

message and sends this encoded message to the receiver. He/she can likewise

decrypt the reply achieved by the receiver.

That’s how an attacker holds the communication between the two parties

without their knowledge.

7. Algebraic Attack

If the attacker has information about ciphertext and plaintext then he can

break the cipher to unveil the secret key. In this attack, attacker expresses

the cipher operation mode as a set of equations then solve it to obtain the

key or some information regarding plaintext.

2.3 Mathematical Background

In this section we will present some elementary definitions that will be used

throughout the thesis.

Definition 2.3.1 (Polygraphic Substitution Cipher)

“Polygraphic substitution divides the plaintext into groups of letters. Then, re-

place each group of letters by one of the predefined letters, numbers, graphic

symbols, or by another group of characters” [38].

Definition 2.3.2 (Extended Euclidean Algorithm)

This algorithm is an extension to Euclidean algorithm, it is used to find greastest

common divisor (gcd) of two integer a and b and also the coefficients x and y, of

bezout’s identity such that

ax+ by = gcd(a, b).
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Algorithm 2.3.1 Extended Euclidean Inverse Algorithm

Input: An integer r and modulo m.

Output: r−1 mod m.

1. Boot six integers Ai and Bi for i = 1, 2, 3 as

(A1, A2, A3) = (1, 0,m)

(B1, B2, B3) = (0, 1, r).

2. If B3 = 0, return A3 = gcd(r,m); no inverse of r exist in mod m.

3. If B3 = 1 then return B3=gcd(r,m) and

B2 = r−1 mod m.

4. Now divide A3 with B3 also find the quotient Q when A3 is divided by B3.

5. Set (Ti = (Ai −Q.Bi)) ; i = 1, 2, 3.

6. Set (A1, A2, A3) = (B1, B2, B3).

7. Set (B1, B2, B3) = (T1, T2, T3).

8. Goto step number 2.

Definition 2.3.3 (Group)

“Let G be a non-empty set. G is said to be a group [39] under a binary operation

define as ∗ : G × G → G for all r, s and t ∈ G. If it satisfies the following

properties:

a. Associativity

G is claimed to be associative under ‘∗’ if for any r, s, t ∈ G the subsequent

equality holds.

(r ∗ s) ∗ t = r ∗ (s ∗ t).

b. Identity Element

An element e ∈ G is claimed to be an identity in G if,

e ∗ r = r = r ∗ e ∀ r ∈ G.
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c. Inverse

For every r ∈ G there exists r′ ∈ G such that,

r ∗ r′ = e = r′ ∗ r

then r′ is said to be inverse of r in G. A set along with one binary operation is

named as Groupoid. A Groupoid satisfying associative property is known as

Semi-group. A Semi-group with an identity element is named as Monoid. A

Monoid with inverses is known as Group.”

Example 2.3.7: Some well known groups are :

1. With binary operation ‘+’, the Z set of all integers, the Q set of rational

numbers, the R set of real and C set of complex numbers.

2. The sets Q \ 0, R \ 0 and C \ 0 also form group under multiplication as

binary operation.

3. The general linear group GL(n, R) is a group under operation of matrix

operation.

Definition 2.3.4 (Cyclic Group)

“A Group G generated by a one element h ∈ G is called cyclic group, where h is

known as generator of G denoted by 〈 h 〉. If h generates G then each element i

∈ G can be written as hs for some integer s and we write G = 〈 h 〉. Moreover,

every cyclic group is an abelian group.

i.e. for all i, j ∈ G”

i ∗ j = hsht = hs+t = ht+s = hths = j ∗ i,

where s, t ∈ Z.

Definition 2.3.5 (Abelian Group)

“A group is said to an abelian group if it satisfies commutative property”

p ∗m = m ∗ p,
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for all p, m ∈ R.

Definition 2.3.6 (Ring)

“Let R be a non-empty set together with two binary operations ‘+’ and ‘.’. It is

said to be a ring [39] under ‘+’ and ‘.’, if the following axioms are satisfied by R.

1. R is an abelian group under addition, meaning that:

• (a + b) + c = a + (b + c) for all a, b, c in R (that is, + is associative).

• a + b = b + a for all a, b in R (that is, + is commutative).

• There is an element 0 in R such that a + 0 = a for all a in R (that is, 0

is the additive identity).

• For each a in R there exists −a in R such that a + (-a) = 0 (that is, −a

is the additive inverse of a).

2. R is a monoid under multiplication, meaning that:

• (a . b) . c = a . (b . c) for all a, b, c in R (that is, . is associative).

• There is an element 1 in R such that a . 1 = a and 1 . a = a for all a in

R (that is, 1 is the multiplicative identity).

3. Multiplication is distributive with respect to addition, meaning that:

• a . (b + c) = (a . b) + (a . c) for all a, b, c in R (left distributivity).

• (b + c) . a = (b . a) + (c . a) for all a, b, c in R (right distributivity).”

OR

“A non-empty set R along with two binary operations, addition (+) and multipli-

cation (.), denoted by (R, +, .) is said to be a ring [40] if it satisfies the subsequent

properties:

1. (R, +) is an abelian group.

2. (R, .) is a monoid.

3. Distributive properties of multiplication over addition holds. That is, for

all p, m, ` ∈ R, we have
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• p . (m + `) = p . m + p . `

• (p + m) . ` = p . ` + m . `”

Example 2.3.6. Followings are the examples of ring.

1. Z, Q, R, and C form ring under usual addition and multiplication.

2. Suppose p is a prime, then the integers mod p (Zp) is a ring.

Definition 2.3.7 (Commutative Ring)

“A ring is known as commutative ring if commutative property with respect to

multiplication holds, that is”

p . m = m . p for all p, m ∈ R.

Example 2.3.6.

“(Z, +, .), (R, +, .) are some examples of commutative ring.”

Definition 2.3.8 (Field)

“A non-empty set F with two binary operations addition (+) and multiplication

(.) is called a field [41] if the following properties holds, for all a, b, c ∈ F.”

1. F is abelian under addition.

2. A ring in which non zero elements form an abelian group with respect to

the binary operation ‘.’ is known a field. F forms an abelian group under

multiplication (only nonzero elements).

Example 2.3.7. Some well known fields are:

1. R and C forms the field under usual multiplication and addition.

2. For every prime p, set of integers (Zp) under mod p is a field.

Definition 2.3.9 (Finite Field) [41]

“A field with finite number of elements is called a finite field.”
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Example 2.2.8. Examples of finite field are:

1. Z mod p where p is a prime number is finite field.

2. Galois field is a finite fields. For instance, GF (2), GF (23), GF (3).

2.4 Modular Arithmetic

In this section, all the arithmetic operations are computed under modulo an in-

teger m are discussed [22]. Many digital signature and encryption schemes are

based on modular mathematic. Based on this, for the Hill cipher algorithm, the

self-invertible matrix is produced. The modulo operator has subsequent charac-

teristics:

1. c = d mod m if n|(c - d).

2. c mod m = d mod m =⇒ c = d mod m.

3. c = d mod m =⇒ d = c mod m.

4. c = d mod m and d = e mod m =⇒ c = e mod m.

Let the set Zm = [0, 1, ..., m - c] of residues modulo m. If this set Zm con-

tains modular arithmetic, arithmetic operations are presented by the following

equations:

• Addition:

(c+ d) mod m = [(c mod m) + (d mod m)] mod m.

• Negation:

−c mod m = p− (c mod m).

• Subtraction:

(c− d) mod m = [(c mod m)− (d mod m)] mod m.



Preliminaries 21

• Multiplication:

(c ∗ d) mod m = [(c mod m) ∗ (d mod m)] mod m.

• Division:

(c/d) mod m = e,

when

c = (d ∗ e) mod m.

• Commutative Law:

(a+ b) mod m = (b+ a) mod m.

(a ∗ b) mod m = (b ∗ a) mod m.

• Associative law:

((a+ b) + c) mod m = (a+ (b+ c)) mod m.

• Distribution Law:

(a ∗ (b+ c)) mod m = ((a ∗ b) mod m+ (a ∗ c) mod m) mod m.

• Identities:

� Additive identity:

(0 + x) mod m = x mod m.

� Multiplicative identity:

(1 ∗ a) mod m = a mod m.
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• Inverses:

� Additive inverse: For each b ∈ Zm, ∃ a such that

(b+ a) mod m = 0,

then

a = −b.

� Multiplicative inverse: For each b ∈ Zm, ∃ a such that

(b ∗ a) mod m = 1.

• Modular congruence additiveness:

For e, f , g, h, and m entities, if

e = g mod m,

and

f = h mod m,

then

e+ f = g + h mod m.

Proof.

Because of

e = g mod m, m | e− g.

Similarly, because of

f = h mod m, m | f − h.

Using an outcome “that the sum of two numbers divisible by m is itself divisible

by m”, therefore we can conclude that

m | (e− g) + (f − h).
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Arithmetically reshuffling, it follows

m | (e+ f)− (g + h)

so e+ f = g + h mod m.

Modular compatibility multiplications:

For e, f , g, h, and m entities, if e = g mod m and f = h mod m, then ef = gh

mod m.

Proof.

Because of

e = g mod m, m | e− g.

Similarly, because of

f = h mod m, m | f − h.

We can use the linear condonation theorem from these two divisibility criteria to

demonstrate that.

m | [f(e− g) + g(f − h)].

Which will algebraically simplify

m | ef − gh, so ef = gh mod m.

2.5 Digital Signature

A digital signature is linked with a person as a digital identity. Asymmetric cryp-

tography is commonly used in digital signatures. Users have a secret key that is

available only to them. They also have a public key that everyone can use.

It is important to use digital signatures to verify the identity of someone. Each

user has their own specific digital signature. Digital signatures can be used to

sign documents, because of this uniqueness. Non-repudiation and integrity can be

used with digital signatures. Digital signatures, such as handwritten signatures,
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are special for every signer. Providers with digital signature systems such as Do-

cuSign adopt a particular procedure, called PKI. PKI requires that the provider

produce two long numbers, called keys, using a mathematical algorithm. One key

is public, and one key is private.

When a signer signs a document electronically, the signature is produced using a

private key from the signer, which the signer always kept secure. The mathemati-

cal procedure acts as a cipher, generating data that follows the signed document,

calling it a hash, and encrypting it. The resulting digital signature is encrypted

files. Additionally, the signature is associated with the signing of the paper. If

after signing, the document changes, the digital signature is invalidated. Various

best-known digital signature schemes are given below.[42]

Figure. 2.5. Digital Signature

2.5.1 Elgamal Signature Scheme

Recall that given a finite group Zp and a fixed element a ∈ Zp, finding an integer

x from the knowledge of y = ax mod p is a computationally hard problem. This

problem is known as discrete logarithm problem (DLP).

The Elgamal signature scheme [43] is a digital signature scheme based on the

numerical complexity of discrete logarithms. The global parameters of Elgamal

digital signature are a prime p1, base element g1 and hash function H. This scheme

is described in the following steps:
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Key Generation

Alice generates his private and public key pairs as follows:

• Choose arbitrarily a secret key x1 with 1 < x1 < p1 - 1.

• Calculate y1 = gx1
1 mod p1.

• The public key is (p1, g1, y1).

Signature Generation

The signer will perform the following steps to sign the message m1:

• Choose a random k1 s.t 0 < k1 < p1 - 1 and find gcd (k1, p1 - 1) = 1.

• Calculate r1 = gk11 mod p1.

• Compute s1 = (H(m1) - x1r1) k
−1
1 mod p1 - 1.

Then the pair (r1, s1) is the numeral signature of the message m1.

Verification

Signature (r1, s1) is confirmed if:

• gH(m1)
1 = yr11 rs11 mod p1

where 0 < r1< p1 and 0 < s1 < p1 - 1.

The verifier accepts the signature if above conditions are satisfied otherwise reject

it.

Correctness

The correctness of the scheme follows from the subsequent steps:

As, s1 = (H(m1) - x1r1)k
−1
1 mod p1 - 1.

• H(m1) = x1r1 + s1k1 mod p1 - 1.

From Fermat’s little theorem,

• gH(m1)
1 = gx1r1

1 gk1s11 mod p1.

• gH(m1)
1 = (gx1)r1 (gk1)s1 mod p1.

• gH(m1)
1 = (yr11 )(rs11 ) mod p1.
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2.5.2 RSA Digital Signature Scheme:

The digital signature scheme of the RSA applies the private key of the sender to a

message generating a signature. Through the verification process, the signature is

verified by applying the correct public key to the message and signature, providing

either a valid or invalid result. The RSA signature scheme [44] is also based on

difficulty of computing discrete logarithms. To sign message m1 following steps

should be performed:

Key Generation

• Choose two large prime numbers r1 and s1.

• Calculate g1 = r1 · s1 where g1 is modulo.

• Calculate ϕ(g1) = (r1 - 1)(s1 - 1).

• Take e1 = 1, · · · , ϕ(g1) s.t gcd(e1, ϕ(g1)) = 1.

• Calculate d1 such that d1 · e1 = 1 mod ϕ(g1).

Signature Generation

To sign message Alice performs the subsequent steps:

• Calculate S1 = md1
1 mod g1.

Verification

If mj
1 = m1 then accepts the message otherwise reject it.

• Calculate mj
1 = Se1

1 mod g1.

Correctness

The correctness of the scheme is shown in the subsequent steps:

As, mj
1= Se1

1 mod g1 and S1 = md1
1 mod g1.

• mj
1 = (md1

1 )e1 mod g1.

• mj
1= (md1.e1) mod g1.

• mj
1= m1 mod g1.
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2.5.3 Importance of Digital Signature

1. Unique to the signer

Authentication: Since certificate verified by a third party was used to

apply the signature, the receivers recognize that the sender have signed it.

Non-repudiation: Non-repudiation is the guarantee that one cannot reject

something’s validity. Non-repudiation is a legal concept that is commonly

used in information security, which applies to a service that provides proof

of data sources and data integrity.

2. Unique to the Document

Message integrity: When the signature is confirmed, it ensures that when

the signature was implemented, the data in the document matched what was

in it. Even the smallest change to the original document would make this

check fail.

3. Encryption with Digital Signature

In several digital communications, it is necessary to exchange encrypted mes-

sages than plaintext to attain confidentiality. A public sender encryption key

is available in the open domain in the public key encryption scheme which en-

sures that anyone can fake their identity and transmit an encrypted message

to the receiver. It makes it necessary for users utilizing PKC for encryption

Figure. 2.6. Encryption with Digital Signature

to check for digital signatures as well as encrypted data to ensure confiden-

tiality and non-repudiation of messages. This can be archived through the
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combination of digital signatures and encryption schemes. There are two

possibilities, sign-then-encrypt and encrypt-then-sign.

However, the sign-then-encryption-based cryptosystem can be used by the

recipient to fake the sender’s identity and send the data to third parties. This

approach is therefore not favored. The encrypt-then-sign method is more ef-

fective and widely accepted. This is shown in Figure (2.6), after obtaining

the encrypted data and signing on it, the recipient first verifies the signature

using the public key from the sender. After ensuring the signature’s validity,

then he recovers the data using his private key through decryption.



Chapter 3

Digital Signature Scheme based

on Block Cipher

In this chapter, we discuss the digital signature scheme presented by Kuppuswamy

et al. [24]. The analysis of the scheme shows that it has many security flaws. In

this chapter, it is shown that the scheme is vulnerable to a known-plaintext attack.

3.1 Introduction

A PKI (Public Key Infrastructure) is a structure in cryptography that connects

public keys to the respective identities of entities (such as individuals and organi-

zations). The connection is created through a registration process and certificate

issuance by a certificate authority (CA). This can be achieved by an automated

process or under human supervision

depending on the level of security of the connection. The PKI is basically used for

safe and sound transfers between businesses or government entities.

Few companies or agencies may want to digitally sign all employee’s documents

created by them.

29
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A signature scheme is a signing procedure that is processed in electronic form,

then this signed document can be distributed over a network of computers. In

this chapter we will discuss signature scheme that uses PKI for signature

generation. For a digital signature, the recipient gets the message and the signa-

ture. To verify the authenticity, the sender must add a validation technique to the

message

combined with the signature. The relationship between a signature and a message

is one-to-one.

The digital signature scheme presented in [24], is depending on the linear block

cipher. Originally the Hill cipher [45] is a symmetric key scheme but the present

signature scheme [24] it is used as an asymmetric key scheme.

3.2 Digital Signature Scheme

The three phase of the signature scheme proposed by Kuppuswamy et al. [24] is

explained in the following algorithm.

The scheme first generates public and private key pair and then sign the document

by using the secret key. The receiver then verifies the document by using the public

key of the sender.

1. Key Generation Choose an n × n matrix as the key component and the

global settings of the digital signature algorithm are a number n for the order

of the matrix and a prime number p.

Algorithm 3.1.1 Key Generation

Input: An n × n matrix and a prime number p.

Output: Public key E mod p and private key D mod p.

Step 1. Arbitrary invertible matrix ‘K’ of order n × n.
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Step 2. Determine the inverse K−1 of the matrix K mod p such that

K ∗ K−1 mod p = I.

Step 3. Choose arbitrary integer ‘`’ and multiply it with matrix ‘K’ to obtain

‘D’. It will be treated as the private key.

Step 4. Determine the inverse `−1 of the integer ‘`’ modulo p.

Step 5. Calculate the public key E as

E = `−1 ∗ K−1 mod p.

Hence calculated public key is E and calculated private key is D.

2. Signature Generation

To sign the message ‘M ’, Alice will perform the following step:

Compute

S = (D ∗ M ) mod p,

where S is the digital signature of message M generated by Alice using

her private key D and the public key p. Then he sends calculated digital

signature to Bob through public network.

3. Signature Verification

Bob receives Alice’s digital signature and verify by using the following way:

Compute

M ′ = (E ∗ S) mod p,

where E is the public key of Alice. If M ′ = M then accepts the message

otherwise reject it.



Digital Signature Scheme based on Block Cipher 32

Figure. 3.1. Digital Signature Architecture

Correctness

The correctness of the scheme, follows from the following steps:

As, M ′ = (E ∗ S) mod p and S = (D ∗ M) mod p.

• M ′ = (E ∗ S) mod p.

• M ′ = (E ∗ D ∗ M) mod p.

• M ′ = ((E ∗ D) ∗ M) mod p.

• M ′ = ((`−1 ∗ K−1) ∗ (` ∗ K)) ∗ M) mod p.
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• M ′ = M mod p.

Remark 3.2.1. Given

E = `−1 ∗ K−1 mod p,

it is hard to compute ` and K and the private key D.

The digital signature algorithm is illustrate by the following two examples with

n = 2 and n = 3.

Example 3.2.1. Suppose n = 2, p = 37, and M = ‘DEAN OMAR’.

Step 1. Alice selects a random prime number i.e.,

p = 37.

Step 2. Choose the arbitrary invertible matrix

K =

3 4

1 2

 mod 37.

Step 3. Compute K−1 using extended Euclidean algorithm

adj(K) =

 2 −4

−1 3

 mod 37

∣∣∣K∣∣∣ = 6− 4 = 2 mod 37

K−1 =
∣∣∣K∣∣∣−1 × adj(K)

K−1 = 2−1 ×

 2 −4

−1 3

 mod 37

2−1 = 19 mod 37

K−1 = 19 ×

 2 −4

−1 3

 mod 37
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K−1 =

 1 35

18 20

 mod 37.

Step 4. Choose arbitrary integer ` = 4 and compute the private key by using the

following equation

D = ` ∗ K mod 37

D = 4 ∗

3 4

1 2

 mod 37 =

12 16

4 8

 mod 37

D =

12 16

4 8

 mod 37.

Step 5. Compute inverse of integer using extended Euclidean algorithm

4−1 = 28 mod 37; Verify (4−1 ∗ 28) mod 37 = 1.

Step 6. Compute

E = `−1 ∗ K−1

E = 28 ∗

 1 35

18 20

 mod 37 =

28 18

23 5

 mod 37,

so public key

E =

28 18

23 5

 mod 37.

Signature Generation
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Alice selects a message to be sign as ‘DEAN OMAR’. Signing message in nu-

merical form is 4, 5, 1, 14, 15, 13, 1, 18. As n = 2 Alice generate the blocks of the

whole message into two characters each block.

For signature generation Alice performed the following step:

Signature = (Private key ∗ Message) mod p12 16

4 8

 ∗
4

5

 mod 37 =

128

56

 mod 37 =

17

19

.

Likewise the rest of the value have been computed:12 16

4 8

 ∗
 1

14

 mod 37 =

236

116

 mod 37 =

14

5


12 16

4 8

 ∗
15

13

 mod 37 =

388

164

 mod 37 =

18

16


12 16

4 8

 ∗
 1

18

 mod 37 =

300

148

 mod 37 =

4

0

.

So she gets the signatures 17, 19, 14, 5, 18, 16, 4, 0. Now Alice sends the signature

and message to Bob.

Signature Verification

Bob confirms Alice’s sign with the help of public keys

E =

28 18

23 5

 and p = 37.

For verification Bob compute:

Message = (Public key ∗ Signature) mod p28 18

23 5

 ∗
17

19

 mod 37 =

818

486

 mod 37 =

4

5

.
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Likewise, he derives others using public key

28 18

23 5

 ∗
14

5

 mod 37 =

248

96

 mod 37 =

 1

14


28 18

23 5

 ∗
18

16

 mod 37 =

472

200

 mod 37 =

15

13


28 18

23 5

 ∗
4

0

 mod 37 =

48

16

 mod 37 =

 1

18

.

Our original message 4, 5, 1, 14, 15, 13, 1, 18. Since signature and received message

both are same. Thus, message has been confirmed and acknowledged.

Example 3.2.2. Suppose n = 3, p = 37, and M = “HELLO OMAR”.

Key Generation

Step 1. Alice selects a random prime number i.e.,

p = 37.

Step 2. Choose the arbitrary invertible matrix

K =


1 2 3

0 1 4

5 6 0

 mod 37.

Step 3. Compute K−1 using extended Euclidean algorithm

Calculating cofactor matrix:

C11 = (−1)1+1

∣∣∣∣∣∣1 4

6 0

∣∣∣∣∣∣ = −24

C12 = (−1)1+2

∣∣∣∣∣∣0 4

5 0

∣∣∣∣∣∣ = 20
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C13 = (−1)1+3

∣∣∣∣∣∣0 1

5 6

∣∣∣∣∣∣ = −5

C21 = (−1)2+1

∣∣∣∣∣∣2 3

6 0

∣∣∣∣∣∣ = 18

C22 = (−1)2+2

∣∣∣∣∣∣1 3

5 0

∣∣∣∣∣∣ = −15

C23 = (−1)2+3

∣∣∣∣∣∣1 2

5 6

∣∣∣∣∣∣ = 4

C31 = (−1)3+1

∣∣∣∣∣∣2 3

1 4

∣∣∣∣∣∣ = 5

C32 = (−1)3+2

∣∣∣∣∣∣1 3

0 4

∣∣∣∣∣∣ = −4

C33 = (−1)3+3

∣∣∣∣∣∣1 2

0 1

∣∣∣∣∣∣ = 1.

Thus, the cofactor matrix of K is,

[Kij] =


−24 20 −5

18 −15 4

5 −4 1

.

Now find the transpose of [Kij]
−24 18 5

20 −15 −4

−5 4 1

,

now,

d = det(K) =

∣∣∣∣∣∣∣∣∣
1 2 3

0 1 4

5 6 0

∣∣∣∣∣∣∣∣∣ = 1

∣∣∣∣∣∣1 4

6 0

∣∣∣∣∣∣ − 2

∣∣∣∣∣∣0 4

5 6

∣∣∣∣∣∣ + 3

∣∣∣∣∣∣0 1

5 6

∣∣∣∣∣∣
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= 1(0− 24)− 2(0− 20) + 3(0− 5) mod 37

= −24 + 40− 15 mod 37

= 1 mod 37.

So required K−1 is,

K−1 = d−1 ∗ [Kij]
T

K−1 = 1−1 ∗


−24 18 5

20 −15 −4

−5 4 1

 mod 37

1−1 mod 37 = 1 mod 37

K−1 =


−24 18 5

20 −15 −4

−5 4 1

 mod 37 =


13 18 5

20 22 33

32 4 1

 mod 37.

Step 4. Choose arbitrary integer ` = 3 and compute the private key by using the

following equation

D = ` ∗ K mod 37

D = 3 ∗


1 2 3

0 1 4

5 6 0

 mod 37 =


3 6 9

0 3 12

15 18 0

 mod 37

D =


3 6 9

0 3 12

15 18 0

 mod 37.

Step 5. Compute inverse of integer by using extended Euclidean algorithm

3−1 mod 37 = 25; Verify (3−1 ∗ 25) mod 37 = 1.
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Step 6. Compute

E = `−1 ∗ K−1

E = 25 ∗


13 18 5

20 22 33

32 4 1

 mod 37 =


325 450 125

500 550 825

800 100 25

 mod 37

E =


29 6 14

19 32 11

23 26 25

 mod 37.

Signature Generation

Alice selects a message to be sign as “HELLO OMAR”. Signing message in

numerical form is 8, 5, 12, 12, 15, 15, 13, 1, 18. As n = 3 Alice generate the blocks

of the whole message into three characters each block.

For signature generation Alice performed the following step:

Signature = (Private key ∗ Message) mod p
3 6 9

0 3 12

15 18 0

 ∗


8

5

12

 mod 37 =


162

159

210

 mod 37 =


14

11

25




3 6 9

0 3 12

15 18 0

 ∗


12

15

15

 mod 37 =


261

225

450

 mod 37 =


2

3

6




3 6 9

0 3 12

15 18 0

 ∗


13

1

18

 mod 37 =


207

219

213

 mod 37 =


22

34

28

.

So she gets the signatures 14, 11, 25, 2, 3, 6, 22, 34, 28. Now Alice sends the

signature and message to Bob.
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Signature Verification

Bob confirms Alice’s sign with the help of public keys

E =


29 6 14

19 32 11

23 26 25

 and p = 37.

For verification Bob compute:

Message = (Public key ∗ Signature) mod p
29 6 14

19 32 11

23 26 25

 ∗


14

11

25

 mod 37 =


822

893

1233

 mod 37 =


8

5

12




29 6 14

19 32 11

23 26 25

 ∗


2

3

6

 mod 37 =


160

200

274

 mod 37 =


12

15

15




29 6 14

19 32 11

23 26 25

 ∗


22

34

28

 mod 37 =


1234

1814

2090

 mod 37 =


13

1

18

.

Our original message 8, 5, 12, 12, 15, 15, 13, 1, 18. Thus, signature and received

message both are same. Message has been verified and accepted.

3.3 Cryptanalysis

In this section, we discuss the security of digital signature scheme 3.2 based on a

block cipher. Originally the Hill cipher [45] is a symmetric key scheme but the

present signature scheme [24] it is used as an asymmetric key scheme. The digital

signature scheme works as fellows:

Signature = (Message ∗ Private key) mod p. (3.1)
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The generated signature and the original message are sent to Bob. He is uses the

public key of sender (Alice) and message to verify Alice’s signature.

Message = (Public key * Signature) mod p. (3.2)

First note that from the key generation (Algorithm 3.1.1), we have,

Public keys: The square matrix E of order n and a prime p.

Private key: The Square matrix D of order n.

Since we have the information about public keys E, p and our aim is to find the

private key D. From the general method of the cryptanalysis attack:

Let Message vector m =

m1

m2

; Signature s =

s1
s2

; Private key D =

k11 k12

k21 k22

.

Suppose also that the public key matrix be given by E =

e11 e12

e21 e22

.

From (3.2), we havem1

m2

 =

e11 e12

e21 e22

 ∗
s1
s2


↑ ↑ ↑

unknown known known

In the above procedure, we have the information about public key and signature

that Alice sends to Bob. We multiply both of them and get the message

m1

m2

.

Now from (3.1)

s1
s2

 =

k11 k12

k21 k22

 ∗
m1

m2


↑ ↑ ↑

known unknown known
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This will results in four linear equations in four unknowns. If the matrix D is

invertible mod p, we can find D the private key from this scheme.

The next examples illustrates the known plaintext attack on the data from 3.2.1.

Example 3.3.1. Digital signature scheme is vulnerable to a known-plaintext at-

tack, because it is linear (if you know the plaintext and the corresponding cipher-

text, the key can be recovered). An adversary who intercepts multiple pairs of

plaintext/ciphertext characters provides a system of linear equations that can be

solved easily. If system is inconsistent, only a few more plaintext/ciphertext pairs

need to be added.

Let D =

k11 k12

k21 k22

 be the private key and m =

m1

m2

 be the message.

For the Example 3.2.1, we have the digital signature 2, 12, 11, 0, 18, 5, 23, 23

which corresponds to “DEAN OMAR” 4, 5, 1, 14, 15, 13, 1, 18.

We have the signature s =

 2

12

 and public keys E =

27 2

8 33

, p = 37.

Recall that the message array is rearranged by using public key E =

27 2

8 33

,

signature factor s =

 2

12

 and the original message is m =

m1

m2

.

For instance, the (m1,m2) is recovered as follows by using the signature

(s1, s2) = (2, 12).

m1

m2

 =

27 2

8 33

 ∗
 2

12

 mod 37

m1

m2

 =

 78

412

 mod 37 =

4

5

.
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We get a message from the above procedure.

Choosing the signature pair (2, 12) and (11, 0) with corresponding message element

pairs (4, 5) and (1, 14) respectively. We mount the attack as follows: 2

12

 =

k11 k12

k21 k22

 ∗
4

5

 mod 37

4k11 + 5k12 = 2 mod 37

4k21 + 5k22 = 12 mod 37

and 11

0

=

k11 k12

k21 k22

 ∗
 1

14

 mod 37

k11 + 14k12 = 11 mod 37

k21 + 14k22 = 0 mod 37.

Now we solve the following linear system of equations in mod 37

4k11 + 5k12 = 2 mod 37 (3.3)

k11 + 14k12 = 11 mod 37 (3.4)

and

4k21 + 5k22 = 12 mod 37 (3.5)

k21 + 14k22 = 0 mod 37 (3.6)

starting with (3.4), we have

k11 + 14k12 = 11 mod 37

=⇒ k11 = 11− 14k12 mod 37 (3.7)

substituting in (3.3) to get
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4(11− 14k12) + 5k12 = 2 mod 37

=⇒ 44− 56k12 + 5k12 = 2 mod 37

−51k12 = 42 mod 37

k12 =
42

51
=

5

14
mod 37 = 5(14)−1 mod 37

k12 = 5(8) = 40 mod 37

k12 = 3 mod 37.

Using the value of k12 in (3.7)

k11 = 11− 14(3) = −31 mod 37

k11 = 6 mod 37.

Similarly from (3.6), we have

k21 + 14k22 = 0 mod 37

=⇒ k21 = −14k22 mod 37 (3.8)

uses the value of k21 in Equation (3.5), we get

4(−14k22) + 5k22 = 12 mod 37

−51k22 = 12 mod 37

k22 =
12

51
=

12

23
mod 37

k22 = 12(23−1) mod 37

k22 = 12(29) = 348 mod 37

k22 = −15 mod 37.



Digital Signature Scheme based on Block Cipher 45

Using the value of k22 in Equation (3.8), we get

k21 = −14(15) = −210 mod 37

k21 = 12 mod 37.

Hence the private key is recovered as

D =

k11 k12

k21 k22

 =

 6 13

12 15

.

Now the attack can alter the original message and send it to Bob by using Alice’s

private key.

Example 3.3.2. Let D =


k11 k12 k13

k21 k22 k23

k31 k32 k33

 be the private key and m =


m1

m2

m3

 be

the message. For the Example 3.2.2, we have the digital signature 14, 11, 25, 2,

3, 6, 22, 34, 28 which corresponds to “HELLO OMAR” 8, 5, 12, 12, 15, 15,

13, 1, 18. Since we have the signature s =


14

11

25

, Public keys E =


29 6 14

19 32 11

23 26 25


and p = 37.

Recall that the message array is rearranged by using public key E =


29 6 14

19 32 11

23 26 25

,

signature s =


14

11

25

 and the original message array is m =


m1

m2

m3

.

For instance, the (m1,m2,m3) is recovered as follows by using the signature

(s1, s2, s3) = (14, 11, 25).
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
m1

m2

m3

 =


29 6 14

19 32 11

23 26 25

∗


14

11

25

 mod 37


m1

m2

m3

 =


822

893

1233

 mod 37 =


8

5

12

.

Hence we got message from above procedure. Choosing the signature pair (14, 11, 25),

(2, 3, 6), and (22, 34, 28) with corresponding massage element pairs (8, 5, 12), (12, 15, 15),

and (13, 1, 18) respectively. We mount the attack as follows:


14

11

25

 =


k11 k12 k13

k21 k22 k23

k31 k32 k33

 ∗


8

5

12

 mod 37

8k11 + 5k12 + 12k13 = 14 mod 37 (3.9)

8k21 + 5k22 + 12k23 = 11 mod 37 (3.10)

8k31 + 5k32 + 12k33 = 25 mod 37 (3.11)

and 
2

3

6

 =


k11 k12 k13

k21 k22 k23

k31 k32 k33

 ∗


12

15

15

 mod 37

12k11 + 15k12 + 15k13 = 2 mod 37 (3.12)

12k21 + 15k22 + 15k23 = 3 mod 37 (3.13)

12k31 + 15k32 + 15k33 = 6 mod 37. (3.14)

Similarly from Equation (3.1)
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
22

34

28

 =


k11 k12 k13

k21 k22 k23

k31 k32 k33

 ∗


13

1

18

 mod 37

13k11 + k12 + 18k13 = 22 mod 37 (3.15)

13k21 + k22 + 18k33 = 34 mod 37 (3.16)

13k31 + k32 + 18k33 = 28 mod 37. (3.17)

Solving with (3.9) and (3.12), we have

24k11 + 15k12 + 36k13 = 42 mod 37 (3.18)

− 12k11 ± 15k12 ± 15k13 = −22 mod 37 (3.19)

12k11 + 21k13 = 3 mod 37. (3.20)

Solving with (3.12) and (3.15), we have

12k11 + 15k12 + 15k13 = 2 mod 37 (3.21)

− 195k11 ± 15k12 ± 270k13 = −330 mod 37 (3.22)

35k11 + 33k13 = 32 mod 37. (3.23)

Solving with (3.20) and (3.23), we have

420k11 + 735k13 = 105 mod 37 (3.24)

− 420k11 ± 396k13 = −384 mod 37 (3.25)

6k13 = 17 mod 37 (3.26)

k13 = (6−1)17 mod 37

6−1mod 37 = 31 mod 37

=⇒ k13 = (31)17 mod 37
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k13 = 9 mod 37.

Substituting in (3.23) to get

35k11 + 33(9) = 32 mod 37

35k11 = 32− 297 mod 37

35k11 = −265 = 31 mod 37

k11 = (35−1)31 = (18)(31) mod 37

k11 = 558 = 3 mod 37.

Using the value of k11 and k13 in (3.9)

8(3) + 5k12 + 12(9) = 14 mod 37

5k12 = 14− 132 = −118 mod 37

5k12 = 30 mod 37

k12 = (5−1)30 mod 37

k12 = (15)30 = 450 = 6 mod 37.

Hence required solution is k11 = 3; k12 = 6; k13 = 9.

Similarly from (3.10), (3.13) and (3.16), we get k21 = 0; k22 = 3; k23 = 12. And

similarly from (3.11), (3.14) and (3.17), we get k31 = 15; k32 = 18; k33 = 0.

Hence the private key is recovered as

D =


k11 k12 k13

k21 k22 k23

k31 k32 k33

 =


3 6 9

0 3 12

15 18 0

.

Which is the key used for the signature. Hence we successfully found the key used

for the digital signature scheme proposed by Kuppuswamy et al. [24] using the
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known-plaintext attack. Results of the simulation show that the original digital

signature can be revealed successfully. Now the attacker can sign any other doc-

ument or message with Alice’s private key. The receiver will not be able to judge

that the message is not signed by Alice.



Chapter 4

Encryption Scheme based on

Self-Invertible Hill Cipher

In this chapter, we discuss the encryption scheme based on self-invertible Hill

cipher presented by Kumar et al. [25]. This article describes the cryptographic

scheme for the Hill cipher algorithm to generate a self-invertible matrix. The

cryptanalysis of the above mentioned scheme shows that it has many security

flaws. In this chapter, we show that the proposed scheme is vulnerable to known-

plaintext attack. First we recall the Hill cipher scheme in the next section.

4.1 Hill Cipher

The Hill cipher is a polygraphic substitution cipher based on linear algebra. It

is invented in 1929 by Lester S. Hill. This was the first polygraphic cipher that

became practical (though barely) for work on more than three symbols at once.

Hill used matrices and matrix multiplication to mix up the plaintext. Hill cipher

algorithm takes m plaintext letters and replaces them with m numbers.

Alice wants to share the information with Bob. Before sharing the information

both parties fix a common secret key K as an n × n invertible matrix modulo an

integer m. The set of alphabet is also fixed, for example 26. Alice will perform

50
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the following steps.

Algorithm 4.1.1 (Hill Encryption Algorithm)

Input: An n× n invertible matrix and a plaintext M .

Output: Ciphertext vectors wi; (i = 1, 2, ..., t).

Step 1. Take the message/plaintext M (by eliminating all spaces and marks of

punctuation) to be sent to Bob.

Step 2. English alphabets A,B,C, ..., Z assigned a numerical value, including A

= 0, B = 1, ... Z = 25. The size of the set of alphabets will determine the work

in modulus “m” for the arithmetic operations. In the present case m = 26.

Step 3. Split the number string into size n blocks. Remember if K is a matrix

of n × n so block size is n. Also note that, if the document is not uniformly split

into n size blocks then we pad the words at the end of the document, this can be

achieved arbitrarily.

Step 4. Write each block from Step 3 as a size n column vector. Thus a series of

n-dimensional vectors, v1, v2, ......, vt can be obtained.

Step 5. Take each vector vi; i = 1, 2, ... t and multiply it by encryption key K

to compute the corresponding ciphertext vectors wi; i.e Kvi = wi (i = 1, 2, ..., t).

Step 6. Take the vectors wi; i = 1, 2, ... t, write the vector entries in sequence,

convert elements of each vector into their corresponding characters as described

in Step 2 and get the alphabetic ciphertext.

Now Bob has the encrypted message and the encryption key, therefore he can

decode the received message sent by Alice. The decryption algorithm is basically

same as the algorithm for encryption, except that K−1 is used instead of K.

Since KM = C, and K is invertible thus one we can calculate M = K−1C. We

will call the decryption key matrix D = K−1, thus DC = M . Remember that this

inverse is taken under modulo m.
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Algorithm 4.1.2 Hill Decryption Algorithm

Input: Ciphertext vectors wi; (i = 1, 2, ..., t).

Output: Plaintext vectors vi; (i = 1, 2, ..., t).

Step 1. Calculate

K−1 mod m.

It will be treated as the decryption key.

Step 2. Convert the received ciphertext into string of integers.

Step 3. For each ciphertext column vector wi, compute the corresponding plain-

text vectors vi as:

vi = K−1vi mod m.(i = 1, 2, ..., t)

Example 4.1.1. Encryption using Hill Cipher

To encrypt a document by using the Hill cipher, we need to convert the keyword

into a key matrix (ordered 2 x 2 or 3 x 3) matrix operating with digraphs and

trigraphs, respectively. Transform the plaintext as a column vector into digraphs

(or trigraphs). Then conduct matrix operations by taking the alphabet length

module (i.e. 26) over each vector. To provide the ciphertext, these vectors are

then changed into letters.

The plaintext message “retreat now” will be encrypted by using the BACK-

UP keyphrase and 3 x 3 matrix. Turning the key phrase into a matrix is the first

step. Note that the key phrase is a few short letters, therefore with the end of the

letter, we fill with the final elements.
B A C

K U P

A B C


the keyword is written in the form of matrix.

1 0 2

10 20 15

0 1 2


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the key matrix discovered by taking the

keyword letters numeric values.

The plaintext is split into trigraphs (we use a 3 x 3 matrix, so we need three

letter groups), and transform these into vector columns. Since the plaintext does

not match perfectly into the vectors of the column, to get the plaintext of the

right size, we need to pad it with some nulls. Then convert plaintext into column

vectors.

v1 =


r

e

t

; v2 =


r

e

a

; v3 =


t

n

o

; v4 =


w

x

x


the plaintext in column vectors was split into trigraphs.

Remember the inclusion of nulls to make it column vectors of the

proper length.

v1 =


17

4

19

; v2 =


17

4

0

; v3 =


19

13

14

; v4 =


22

23

23


the plaintext was transformed into

the vectors of numeric columns.

Now, combine the top row of the key matrix with the column vector to encrypt the

top element of the subsequent column vector in order to perform multiplication in

matrix. Then encrypt the key matrix centerline with the column vector to induce

the subsequent column vector center component. And likewise for the bottom row.

In this way we get six numbers as the result of the product of the first elements

of key matrix with the top element of column vector of plaintext. Multiply by the

middle component of the column vector the second component of the key matrix

row, and multiply the key matrix row’s third element by the column vector’s

bottom element. By adding the three responses altogether we have.
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
1 0 2

10 20 15

0 1 2




17

4

19

 mod 26

=


1× 17 + 0× 4 + 2× 19

10× 17 + 20× 4 + 15× 19

0× 17 + 1× 4 + 2× 19

 mod 26

=


3

15

16

 mod 26

=


d

p

q

 mod 26.

Likewise, the rest of the trigraphs are encoded as fellow:


B A C

K U P

A B C



r

e

a

 =


1 0 2

10 20 15

0 1 2




17

4

0

 =


17

250

4

 =


17

16

4

 mod 26 =


r

q

e



B A C

K U P

A B C



t

n

o

 =


1 0 2

10 20 15

0 1 2




19

13

14

 =


47

660

41

 =


21

10

15

 mod 26 =


v

k

r



B A C

K U P

A B C



w

x

x

 =


1 0 2

10 20 15

0 1 2




22

23

23

 =


68

1025

69

 =


16

11

17

 mod 26 =


q

l

r

.

This provides us the final ciphertext “dpqrq evkpq lr”.

Decryption using Hill Cipher

The inverse matrix should be found to decode a ciphertext encoded using the Hill

cipher. The decryption method is the same as encoding if we have the inverse
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matrix. The inverse key matrix is multiplied by the cipher column vectors then

taking the alphabet size of the results modulo and transform the numbers back to

letters.

In particular, perform the calculation below to determine the inverse of the key

matrix, where K is the key matrix, d is the key matrix determinant and adj(K)

is a K matrix adjoint.

K−1 = d−1 × adj(K), (4.1)

as

K =


k11 k12 k13

k21 k22 k23

k31 k32 k33



d = det(K) =

∣∣∣∣∣∣∣∣∣
1 0 2

10 20 15

0 1 2

∣∣∣∣∣∣∣∣∣ = 1

∣∣∣∣∣∣20 15

1 2

∣∣∣∣∣∣ − 0

∣∣∣∣∣∣10 15

0 2

∣∣∣∣∣∣ + 2

∣∣∣∣∣∣10 20

0 1

∣∣∣∣∣∣
= 1(40 − 15) − 0(20 − 0) + 2(10 − 0) mod 26

= 25 − 0 + 20 mod 26

= 45 mod 26

= 19 mod 26.

Using extended Euclidean algorithm, compute d−1 mod 26.

19−1 mod 26 = 11; Verify (19−1 ∗ 11) mod 26 = 1.

Calculating cofactor matrix of K:

C11 = (−1)1+1

∣∣∣∣∣∣20 15

1 2

∣∣∣∣∣∣ = 25
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C12 = (−1)1+2

∣∣∣∣∣∣10 15

0 2

∣∣∣∣∣∣ = −20

C13 = (−1)1+3

∣∣∣∣∣∣10 20

0 1

∣∣∣∣∣∣ = 10

C21 = (−1)2+1

∣∣∣∣∣∣0 2

1 2

∣∣∣∣∣∣ = 2

C22 = (−1)2+2

∣∣∣∣∣∣1 2

0 2

∣∣∣∣∣∣ = 2

C23 = (−1)2+3

∣∣∣∣∣∣1 0

0 1

∣∣∣∣∣∣ = −1

C31 = (−1)3+1

∣∣∣∣∣∣ 0 2

20 15

∣∣∣∣∣∣ = −40

C32 = (−1)3+2

∣∣∣∣∣∣ 1 2

10 15

∣∣∣∣∣∣ = 5

C33 = (−1)3+3

∣∣∣∣∣∣ 1 0

10 20

∣∣∣∣∣∣ = 20.

Thus, the cofactor matrix of K is

[Kij] =


25 −20 10

2 2 −1

−40 5 20

,

now find the transpose of [Kij]


25 2 −40

−20 2 5

10 −1 20

,

so required K−1 is
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K−1 = d−1 ∗ [Kij]
T

K−1 = 19−1 ∗


25 2 −40

−20 2 5

10 −1 20

mod 26

K−1 = 11 ∗


25 2 −40

−20 2 5

10 −1 20

mod 26

K−1 =


275 22 −440

−220 22 55

110 −11 220

mod 26

K−1 =


15 22 2

14 22 3

6 15 12

mod 26.

We computed the inverse of the key matrix, now we multiply K−1 by each cipher

to get the plaintext matrix:

Decryption of trigraphs:


15 22 2

14 22 3

6 15 12



d

p

q

 =


15 22 2

14 22 3

6 15 12




3

15

16

 =


55

535

42

 =


17

4

19

 mod 26 =


r

e

t




15 22 2

14 22 3

6 15 12



r

q

e

 =


15 22 2

14 22 3

6 15 12




17

16

4

 =


17

250

4

 =


17

4

0

 mod 26 =


r

e

a




15 22 2

14 22 3

6 15 12



v

k

r

 =


15 22 2

14 22 3

6 15 12




21

10

15

 =


47

660

41

 =


19

13

14

 mod 26 =


t

n

0


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
15 22 2

14 22 3

6 15 12



q

l

r

 =


15 22 2

14 22 3

6 15 12




16

11

17

 =


68

1025

69

 =


22

23

23

 mod 26 =


w

x

x

.

This provides us the final plaintext “retreat now”.

Example 4.1.2. Since the Hill cipher technique is linear technique for the crypt-

analysis. To evaluate the key matrix, just two bigraph need to be found. If we

have to know that ‘TH’ is encrypted to ‘GK’ and ‘ER’ is encrypted to ‘BD’, we

compute the collection of the equations and discover the key matrix for coding.

To break the cipher, we must focus on the above described. The technique being

presented here may impact on the understanding of several phrases in the message.

Consider the ciphertext:

“FUPCMTGZKYUKBQFJHUKTZKKIXTTA”.

We know that somewhere in the text phrase will “OF THE” occurs. This implies

that on the following cases is right (recall the character pairs in Hill cipher en-

cryption):

“FU PC MT GZ KY UK BQ FJ HU KT ZK KI XT TA

—————————————–

OF TH E. .. .. .. .. .. .. .. .. .. .. ..

.O FT HE .. .. .. .. .. .. .. .. .. .. ..

.. OF TH E. .. .. .. .. .. .. .. .. .. ..

.. .O FT HE .. .. .. .. .. .. .. .. .. ..

.. .. OF TH E. .. .. .. .. .. .. .. .. ..

.. .. .O FT HE .. .. .. .. .. .. .. .. ..”

and so on. If the second row is right, you have got the following: PC → FT i.e.

PC pairs are decrypted FT , and MT → HE. Set the equation now (replacement
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of A by 0, B by 1, O by 14, etc.) which collects this data:

D

P
C

 =

F
T

→ D

15

2

 =

 5

19

mod 26 (4.2)

as well because of the following equation:

D

M
T

 =

H
E

→ D

12

19

 =

7

4

mod 26 (4.3)

and calculate the D matrix, which is the key for decryption. The above Equations

(4.2, 4.3) are combined into one single equation as:

D

15 12

2 19

 =

 5 7

19 4

 mod 26.

Rearrange the equations now to find the numbers that we want to calculate:

D =

 5 7

19 4

15 12

2 19

−1 (4.4)

K−1 be the inverse of the matrix K and d is the determinant of the matrix K.

such that

K × K−1 = I mod 26,

where the identity matrix is I. The below equation tells us how to discover K−1

by using K:

K−1 = d−1 × adj(K),

where d × d−1 = I mod 26, and adj (K) is a K matrix adjugate. The determinant

of the matrix we are calculated as

ac − bd mod 26 = 15 ∗ 19 − 12 ∗ 2 = 261 = 1 mod 26.
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In addition, the inverse of the determinant 1 must also be found. The matrix

adjugate is calculated as follows:

adj

15 12

2 19

 =

19 −12

−2 15

.

Compute the inverse:

K−1 = 1−1 ×

15 12

2 19

 = 1 ×

19 −12

−2 15

 =

19 14

24 15

,

now go back to Equation (4.4) in order to determine D.

D =

 5 7

19 4

15 12

2 19

−1 =

 5 7

19 4

19 14

24 15

 =

263 175

457 326



=

 3 19

15 14

 mod 26.

This is our decryption key. But, if we try to decrypt the sentence, we should have:

“FRFTHEZYSSQYVFETLVBAFVACONFZ”,

that is not the required answer. This means that one of our first assumptions

was incorrect in all our original assumptions, the idea used that at the second

position our crib ‘OF THE’ started. Drag ‘OF THE’ through each place until we

get English at the output to determine the specific task, we want to perform. If

we use an 18 offset, combining KT → FT and ZK → HE and continue the above

process by obtaining the matrix:

17 5

18 23

,

attempt to decipher our ciphertext:

“DEFENDTHEEASTWALLOFTHECASTLE”,
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which is finally the required answer. The method we used here is called ‘crib

dragging’, if simulate it manually then it could be tiresome. Putting a computer

program in writing is much easier to attempt. But it is quiet handsome task for a

computing machine.

Decryption of Hill cipher requires the inverse of the matrix, but there is an issue

with decryption, that is not always the inverse of the matrix exist. [21]. If the

matrix is not invertable, then it is not possible to decrypt the encrypted text.

To handel with this problem, the author of [25], proposed the use of self invert-

ible matrices. In the self-invertible matrix generation technique, the matrix used

for encryption is self-invertible matrix. So, at the time of decryption, we do not

need to find the inverse matrix. Moreover, this approach eliminates the compu-

tational complexity involved in finding the inverse of the matrix when performed

the decryption.

4.2 Self-Invertible Matrix

If a matrix is equal to the inverse of itself then it is known as the self-invertible

matrix. The analyses provided for the self-invertible matrix generation are valid

for the positive integer matrix, these matrices are formed by the residues of the

prime number of the modulo arithmetic.

Let A =


a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...

an1 an2 ... anm

,

be an m × m self-invertible matrix divided into the blocks A11, A12, A21, and A22

as follows.

A =

A11 A12

A21 A22


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A11 is a matrix of 1×1 order =
[
a11

]
,

A12 is a matrix of 1 × (m − 1) order =
[
a12 a13 a1n

]
,

A21 is a matrix of (m − 1) × 1 order =


a21

a31

...

an1

 and,

A22 is a matrix of (m − 1) × (m − 1) order =


a22 a23 ... a2n

a32 a33 ... a3n

... ... ... ...

an2 an3 ... anm

,

for A be self-invertible, we must have

A12A21 = I − A2
11 =

[
1− a211

]
. (4.5)

And

A12(a11I + A22) = 0. (4.6)

Also,

a11 = - (one of the eigenvalues of B22 other than 1).

Since A21A12 is a singular matrix of rank 1,

A21A12 = I − A2
22, (4.7)

therefore, A2
22 must have a rank (m − 2) with eigenvalue +1 of multiplicity (m −

2).

Therefore, A22 must have eigenvalues ±1.

In order to find any self-invertible matrix A we have to start with a random (m −

1) × (m − 1) matrix A22 having eigenvalue of either +1 or −1 or both and then

obtain other matrices A21 and A12 by solving (4.7) and (4.5) term by term. Thus

we have the following algorithm for generation a self-invertible matrix.
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Algorithm 4.2.1

Input: A matrix ‘A22’ of an order (m − 1) × (m − 1).

Output: Self-invertible matrix ‘A’ of an order m × m.

Step 1. Select A22, a non-singular (m − 1) × (m − 1) matrix with

(m − 2) eigenvalues of either +1 or −1 or both.

Step 2. Calculate the rest of the eigenvalues; λ of A22.

Step 3. Put a11 ∈ A

a11 = − λ.

Step 4. Use the Equation (4.7) to get a consistent solution for A12 and A21

components.

Step 5. Construct the matrix A. Which is required self-invertible matrix of an

order m × m.

Generation of self-invertible matrix is illustrates by the following two examples

with m = 2 and m = 3.

Example 4.2.1. (Generation of Self-Invertible Matrix)

Let A22 =

2 5

1 6

 which has eigenvalues λ = ±1, 7.

So, A11 = − 7 =
[
6
]

mod 13.

From Equation (4.7), we have

A21A12 = I − A2
22

A21A12 =

1 0

0 1

 −
2 5

1 6

2
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A21A12 =

1 0

0 1

 −
9 40

8 41



A21A12 =

−8 −40

−8 −40


a21a12 a21a13

a31a12 a31a13

 =

5 12

5 12

 mod 13,

then a21a12 = 5. So, a21 = 5, a12 = 1.

a21a13 = 12. a13 = (5−1)(12) = (5)(12) = 5 mod 13.

a31a12 = 5. a31 = (1−1)(5) = (1)(5) = 5 mod 13.

Consistent solution is A12 =
[
1 5

]
, and A21 =

5

5

.

Hence required self-invertible matrix is

A =


6 1 5

5 2 5

5 1 6

.

Example 4.2.2. Let A22 =


9 6 10

12 10 2

5 3 4

 which has eigenvalues λ = ±1, 10.

So, A11 = − 10 =
[
3
]

mod 13.

From Equation (4.7), we have

A21A12 = I − A2
22 A21A12 =


1 0 0

0 1 0

0 0 1

 −


9 6 10

12 10 2

5 3 4


2
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A21A12 =


1 0 0

0 1 0

0 0 1

 −


203 144 142

238 178 148

101 72 72



A21A12 =


−202 −144 −142

−238 −177 −148

−101 −72 −71



a21a12 a21a13 a21a14

a31a12 a31a13 a31a14

a41a12 a41a13 a41a14

 =


6 12 1

9 5 8

3 6 7

 mod 13,

then a21a12 = 6. So, a21 = 6, a12 = 1.

a21a13 = 12. a13 = (6−1)(12) = (11)(12) = 2 mod 13.

a21a14 = 1. a13 = (6−1)(1) = 11 mod 13.

a31a12 = 9. a31 = (1−1)(9) = (1)(9) = 9 mod 13.

a41a12 = 3. a41 = (1−1)(3) = (1)(3) = 3 mod 13.

One of the consistent solution is A12 =
[
1 2 11

]
, and A21 =


6

9

3

.

Hence required self-invertible matrix is

A =


3 1 2 11

6 9 6 10

9 12 10 2

3 5 3 4

.

Another consistent solution is A12 =
[
11 9 4

]
, and A21 =


10

2

5

. So,



Encryption Scheme based on Self-Invertible Hill Cipher 66

A =


3 11 9 4

10 9 6 10

2 12 10 2

5 5 3 4

.

4.3 Cryptanalysis

Cryptanalysis is the strategy of breaking codes and algorithms. If we try to break

a Hill cipher, it becomes hard to guess this using frequency analysis, especially

when we use a large key size. Frequency analysis can be effective if applied in

bigraph for very lengthy ciphertexts (for a cipher of 2 by 2), but for encryption

using bigraph of small ciphertexts, it would becomes infeasible.

The first thing to note is that each key matrix row encodes to one letter indepen-

dently of the rest of the key matrix when encoding in Hill cipher.
K11 K12 K13

K21 K22 K23

K31 K32 K33



a

b

c

=


aK11 bK12 cK13

aK21 bK22 cK23

aK31 bK32 cK33

 mod 26,

while taking multiplication the highest row of the left matrix is simply concerned

within the highest cell of the ciphertext matrix, the middle cell is simply con-

cerned with the bottom row, etc. We can use this fact to reduce number of keys

significantly we can also verify for authorized Hill cipher interruption.

Example 4.3.1. Hill cipher is vulnerable to a known-plaintext attack, because it

is linear (if you know the plaintext and the corresponding ciphertext, the key can

be recovered). An adversary who intercepts multiple pairs of plaintext/ciphertext

characters sets up a linear system of equations that can be solved easily. If this

system is inconsistent, then just a few more pairs of plaintext/ciphertext must be

added. Let K =


K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

 be the self-invertible key that uses in

[25].
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Suppose that ciphertext starts with “dcckid mcjc iffegi” which is the same as

“lester Hill cipher” to determine the key matrix. Since lest→dcck, erhi→idmc,

llci→jcif and pher→fegi
K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44




11

4

5

6

=


3

2

2

10

 mod 13


K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44




4

4

7

8

=


8

3

12

2

 mod 13


K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44




11

11

2

8

=


9

2

8

5

 mod 13


K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44




2

7

4

4

=


5

4

6

8

 mod 13.

Now to solve for K, we convert the matrices into the systems of linear equations

as follows:

11K11 + 4K12 + 5K13 + 6K14 = 3 mod 13 (4.8)

11K21 + 4K22 + 5K23 + 6K24 = 2 mod 13 (4.9)

11K31 + 4K32 + 5K33 + 6K34 = 2 mod 13 (4.10)

11K41 + 4K42 + 5K43 + 6K44 = 10 mod 13 (4.11)

4K11 + 4K12 + 7K13 + 8K14 = 8 mod 13 (4.12)
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4K21 + 4K22 + 7K23 + 8K24 = 3 mod 13 (4.13)

4K31 + 4K32 + 7K33 + 8K34 = 12 mod 13 (4.14)

4K41 + 4K42 + 7K43 + 8K44 = 2 mod 13 (4.15)

11K11 + 11K12 + 2K13 + 8K14 = 9 mod 13 (4.16)

11K21 + 11K22 + 2K23 + 8K24 = 2 mod 13 (4.17)

11K31 + 11K32 + 2K33 + 8K34 = 8 mod 13 (4.18)

11K41 + 11K42 + 2K43 + 8K44 = 5 mod 13 (4.19)

2K11 + 7K12 + 4K13 + 4K14 = 5 mod 13 (4.20)

2K21 + 7K22 + 4K23 + 4K24 = 4 mod 13 (4.21)

2K31 + 7K32 + 4K33 + 4K34 = 6 mod 13 (4.22)

2K41 + 7K42 + 4K43 + 4K44 = 8 mod 13. (4.23)

There are twelve unknowns and twelve linear equations. Solving (4.8) and (4.16),

we have

11K11 + 4K12 + 5K13 + 6K14 = 3 mod 13

−11K11 ± 11K12 ± 2K13 ± 8K14 = ±9 mod 13

− 7K12 − 3K13 + 2K14 = 6 mod 13. (4.24)

Solving (4.12) and (4.20), we have

4K11 + 4K12 + 7K13 + 8K14 = 8 mod 13

−4K11 ± 14K12 ± 8K13 ± 8K14 = ±10 mod 13

− 10K12 −K13 = −2 mod 13. (4.25)
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Solving (4.8) and (4.12), we have

44K11 + 16K12 + 20K13 + 24K14 = 12 mod 13

−44K11 ± 44K12 ± 77K13 ± 88K14 = ±88 mod 13

−28K12 − 57K13 − 64K14 = −76 mod 13

2K12 + 5K13 + 12K14 = 11 mod 13. (4.26)

Again solving (4.16) and (4.20), we get

22K11 + 22K12 + 4K13 + 16K14 = 18 mod 13

−22K11 ± 77K12 ± 44K13 ± 44K14 = ±55 mod 13

−55K12 − 40K13 − 28K14 = −37 mod 13

3K12 +K13 + 5K14 = 11 mod 13. (4.27)

Solving (4.24) and (4.26), we get

42K12 − 18K13 + 12K14 = 36 mod 13

±2K12 ± 5K13 ± 12K14 = ±11 mod 13

40K12 − 23K13 = 25 mod 13

K12 + 3K13 = 12 mod 13. (4.28)

Solving (4.25) and (4.27), we get

10K12 +K13 = 2 mod 13

±10K12 ± 30K13 = ±120 mod 13

29K13 = 118 mod 13

K13 = (3−1)(1) = 9 mod 13.
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Substituting in (4.28) to get

K12 + 3(9) = 12 mod 13

K12 = 12− 27 = −15 = 11 mod 13.

Substituting the value of K13 and K12 in (4.27) to get

3(11) + 9 + 5K14 = 11 mod 13

5K14 = 11− 42 = −31 = 8 mod 13

5K14 = (5−1)(8) = (8)(8) = 4 mod 13.

Substituting the value of K13, K12 and K14 in (4.8) to get

11K11 + 4(11) + 5(9) + 6(4) = 3 mod 13

11K11 = 3− 113 = −110 = 7 mod 13

K11 = (11−1)(7) = (6)(7) = 42 = 3 mod 13.

Hence the required solution of unknows are K11 = 3, K12 = 11, K13 = 9 and

K14 = 4. Similarly solve the rest of the equations to get the self-invertible key

K =


K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

 =


3 11 9 4

10 9 6 10

2 12 10 2

5 5 3 4

.

Which is the required self-invertible key used for encryption and decryption. Hence

we successfully found the key used for the encryption and decryption scheme pro-

posed by Kumar et al. [25] using the known-plaintext attack. Results of the

simulation show that the original plaintext can be revealed successfully. Now the

attacker can encrypt any other document or message with Alice’s private key. The

receiver will not be able to judge that the message is not encrypted by Alice.



Chapter 5

Conclusion

In this thesis, we review two articles “Digital Signature Scheme based on block

cipher” proposed by Kuppuswamy et al. [24] and “Encryption Scheme based on

Self-Invertible Hill Cipher” presented by Kumar et al. [25]. Both schemes are

based on matrices over the integer Zn. The proposed method of digital signature

scheme based on the linear block cipher or Hill cipher. Originally the Hill cipher

[45] is a symmetric key scheme but the present signature scheme [24] it is used as

an asymmetric key scheme. Underlying hard problem of this scheme is to com-

pute ` and K and the private key D if E = `−1 ∗ K−1 is given. An adversary

that intercepts multiple pairs of plaintext/ciphertext characters sets up a linear

system of equations that can be easily solved to give unique values of required

unknowns. If this system turns out to be inconsistent, then we include a few more

plaintext/ciphertext pairs to get the private key. We have taken the cryptanalysis

of digital signature scheme presented in [24] by finding the private key. Hence

we successfully found the key used for the digital signature scheme proposed by

Kuppuswamy et al. [24] using the known-plaintext attack. Results of the simula-

tion show that the original digital signature can be revealed successfully. Now the

attacker can sign any other document or message with the sender (Alice) private

key. The receiver will not be able to judge that the message is not signed by Alice.

The encryption scheme based on self-invertible Hill cipher [25] is also based on the

linear block ciphers. An effective methods for the Hill cipher algorithm to produce

71
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a self-invertible matrix is proposed by Kumar et al. This proposed method of

self-invertible matrix generation can also be used in other algorithms where the

inversion of the matrix is necessary. We observed that the use of self-invertible

matrices can just make the decryption process efficient as the receiver does not

have to compute the inverse the key matrix over Zn. This has nothing to do with

the security flaws in the original Hill cipher algorithm. We found that Hill cipher

based on self-invertible matrices is also vulnerable to a known-plaintext attack,

because it becomes linear system of equations (if you know the plaintext and the

corresponding ciphertext, the key can be recovered). If this system is inconsistent,

then a few more plaintext/ciphertext pairs need to be added to get the private key.

Results of the cryptanalysis show that the secret key use in the Hill cipher scheme

can be revealed successfully. The attacker can now decrypt any other document

or message that was encrypted with this secret key.
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